3.711 \(\int \frac {(a+b \cos (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=234 \[ \frac {2 b \left (27 a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (7 a^2+15 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a \left (7 a^2+15 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 b \left (27 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {40 a b^2 \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)} \]

[Out]

40/63*a*b^2*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/45*b*(27*a^2+7*b^2)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/9*b^2*(b+a*sec
(d*x+c))*sin(d*x+c)/d/sec(d*x+c)^(7/2)+2/21*a*(7*a^2+15*b^2)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2/15*b*(27*a^2+7*b^
2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(
d*x+c)^(1/2)/d+2/21*a*(7*a^2+15*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2
*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 234, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3238, 3841, 4047, 3769, 3771, 2639, 4045, 2641} \[ \frac {2 b \left (27 a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (7 a^2+15 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a \left (7 a^2+15 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 b \left (27 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {40 a b^2 \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^3/Sec[c + d*x]^(3/2),x]

[Out]

(2*b*(27*a^2 + 7*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(15*d) + (2*a*(7*a^2 +
15*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (40*a*b^2*Sin[c + d*x])/(63*
d*Sec[c + d*x]^(5/2)) + (2*b*(27*a^2 + 7*b^2)*Sin[c + d*x])/(45*d*Sec[c + d*x]^(3/2)) + (2*a*(7*a^2 + 15*b^2)*
Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]]) + (2*b^2*(b + a*Sec[c + d*x])*Sin[c + d*x])/(9*d*Sec[c + d*x]^(7/2))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3238

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3841

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps

\begin {align*} \int \frac {(a+b \cos (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx &=\int \frac {(b+a \sec (c+d x))^3}{\sec ^{\frac {9}{2}}(c+d x)} \, dx\\ &=\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2}{9} \int \frac {10 a b^2+\frac {1}{2} b \left (27 a^2+7 b^2\right ) \sec (c+d x)+\frac {1}{2} a \left (9 a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2}{9} \int \frac {10 a b^2+\frac {1}{2} a \left (9 a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx+\frac {1}{9} \left (b \left (27 a^2+7 b^2\right )\right ) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {40 a b^2 \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \left (27 a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {1}{15} \left (b \left (27 a^2+7 b^2\right )\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{7} \left (a \left (7 a^2+15 b^2\right )\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {40 a b^2 \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \left (27 a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (7 a^2+15 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {1}{21} \left (a \left (7 a^2+15 b^2\right )\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{15} \left (b \left (27 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 b \left (27 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {40 a b^2 \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \left (27 a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (7 a^2+15 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {1}{21} \left (a \left (7 a^2+15 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 b \left (27 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {2 a \left (7 a^2+15 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {40 a b^2 \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 b \left (27 a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (7 a^2+15 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.24, size = 159, normalized size = 0.68 \[ \frac {\sqrt {\sec (c+d x)} \left (120 a \left (7 a^2+15 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+168 b \left (27 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\sin (2 (c+d x)) \left (5 \left (84 a^3+54 a b^2 \cos (2 (c+d x))+234 a b^2+7 b^3 \cos (3 (c+d x))\right )+7 b \left (108 a^2+43 b^2\right ) \cos (c+d x)\right )\right )}{1260 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^3/Sec[c + d*x]^(3/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(168*b*(27*a^2 + 7*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 120*a*(7*a^2 + 15*b
^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (7*b*(108*a^2 + 43*b^2)*Cos[c + d*x] + 5*(84*a^3 + 234*a*b^
2 + 54*a*b^2*Cos[2*(c + d*x)] + 7*b^3*Cos[3*(c + d*x)]))*Sin[2*(c + d*x)]))/(1260*d)

________________________________________________________________________________________

fricas [F]  time = 1.08, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right ) + a^{3}}{\sec \left (d x + c\right )^{\frac {3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3)/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 1.02, size = 470, normalized size = 2.01 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-1120 b^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (2160 b^{2} a +2240 b^{3}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-1512 a^{2} b -3240 b^{2} a -2072 b^{3}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (420 a^{3}+1512 a^{2} b +2520 b^{2} a +952 b^{3}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-210 a^{3}-378 a^{2} b -720 b^{2} a -168 b^{3}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+105 a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+225 b^{2} a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-567 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -147 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}\right )}{315 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^3/sec(d*x+c)^(3/2),x)

[Out]

-2/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-1120*b^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c
)^10+(2160*a*b^2+2240*b^3)*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c)+(-1512*a^2*b-3240*a*b^2-2072*b^3)*sin(1/2*d
*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(420*a^3+1512*a^2*b+2520*a*b^2+952*b^3)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)
+(-210*a^3-378*a^2*b-720*a*b^2-168*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+105*a^3*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+225*b^2*a*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-567*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-147*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*
d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^3/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))^3/(1/cos(c + d*x))^(3/2),x)

[Out]

int((a + b*cos(c + d*x))^3/(1/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \cos {\left (c + d x \right )}\right )^{3}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**3/sec(d*x+c)**(3/2),x)

[Out]

Integral((a + b*cos(c + d*x))**3/sec(c + d*x)**(3/2), x)

________________________________________________________________________________________